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•  VisIt/Libsim and 

FieldView 
•  Workflow success 
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•  Instrumenting a 

simulation using 
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Intelligent Light 
•  Established in 1984 

–  Nearly three decades in the software 
& services business 

–  FieldView launched in 1990 
–  Global Customer Base 
–  Truly Solver Independent 
–  Multiple CFD practitioners on staff 

•  We bridge CFD & IT for customers 
CFD Solvers 
 
 
 
 
 
 

IT 
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Serving the CFD Community 
•  FieldView Software Products 

–  Comprehensive scope, from laptops to HPC 
•  Visualization, numerical analysis 
•  Data management & Automation 

•  CFD Consulting Services Team 
–  Training (on-site or at Intelligent Light) 
–  Script development, FieldView customization 
–  Workflow Automation & Optimization 

•  Applied Research Group (ARG) 
–  R&D in advanced post-processing & CFD methods 
–  Feeds technology into FieldView 

Our Mission: To help our customers using CFD to 
do more with less and make better decisions 
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Applied Research Group 
Strategic R&D for CFD, post-processing & visualization 

 •  Led by Dr. Earl P.N. Duque 
•  Air Force Research Lab – 

EPISODE 
–  Large Scale Extracts 
–  POD 
–  Reduced Order Models 

•  Department of Energy – 
FieldView-VisIt 
–  Open Source Post-Processing 

Software 
–  Commercialized for High End Users 

3D Fractal Isosurface from VisIt on BlueGene/Q 
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Active Deployment / Continuous Development 
•  DOE has chosen Intelligent Light to commercialize VisIt for 

engineering use – SBIR Phase 2 
–  Binary FieldView XDB libs with VisIt  Open source 
–  Open-source VisIt engine, with FieldView GUI in client 
–  Supported Software 

•  Libsim already coupled to 
–  CREATE/AV – Kestrel 
–  FUN3D 

•  Other significant efforts 
–  DOE-OASCR: Scalable Analysis Methods and In Situ Infrastructure for 

Extreme Scale Knowledge Discovery 
•  Infrastructure for ExaScale 
•  Team with Lawrence Berkeley National Lab (Lead), Argonne, Georgia Tech & 

Kitware 
–  Lawrence Livermore National Laboratory: Blue Gene Q Port 
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•  In situ processing couples data analysis 
and visualization with the simulation’s 
execution so both are done in tandem 

•  There are different forms: 
–  In transit – operates on the data when it is 

staged to another compute resource 

– Tightly coupled – operates on the data in the 
same address space as the simulation 
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Case For Using In Situ 
•  I/O in supercomputers has not 

kept pace with compute power 
–  Some applications report 90% 

of time spent in I/O [Peterka et al.] 
–  Post processing simulation files 

requires write then read, paying 
for I/O twice in different 
application 

•  In situ reduces I/O costs and 
makes it feasible to save 
analyzed results (much smaller) 
at higher temporal frequency 

•  In situ provides an opportunity to 
analyze more of the data rather 
than just the portion that is 
typically saved 

Machine Year Writable 
FLOPS 

Whole-
System 
Checkpoint 

ASCI Red  1997 0.075%  300 sec 
 

ASCI Blue 
Pacific  

1998  0.041%  400 sec 

ASCI White  2001  0.026%  480 sec 

ASCI Red 
Storm  

2005  0.035%  660 sec 

ASCI 
Purple  

2005  0.025%  500 sec 

NCCS XT4  2007  0.004%  1400 sec 

Roadrunner  2008  0.005%  480 sec 

NCCS XT5  2008  0.005%  1250 sec 

ASC 
Sequoia  

2012 0.001%  3200 sec 



Copyright (c) 2015 Intelligent Light 
All Rights Reserved 

Software to Enable In Situ Workflow 

•  The simulation is the host 
program that controls 
execution and generates 
data 

•  VisIt/Libsim forms the in 
situ infrastructure and its 
supporting runtime library 
which creates data 
products such as XDB 
extracts for post hoc 
analysis 

•  FieldView is the 
postprocessor and 
ultimate consumer for 
data products created in 
situ 

 
 

Simulation 

FieldView VisIt / Libsim data 
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§  VisIt is open source software for visualizing and 
analyzing petascale simulation datasets 

98K cores 8 trillion cells 

VisIt is made for large problems 

3D Fractal 
Dataset on 
LLNL Vulcan 
BlueGene/Q 
(98 billion cells) 

•  Started Summer 2000 
•  R&D 100 award winner 2005 
•  Used worldwide 
•  Target use cases: 

•  Quantitative Analysis 
•  Comparative Analysis 
•  Data Exploration 
•  Visual Debugging 
•  Presentation Graphics 

•  Intelligent Light’s VisIt work 
partially supported by DOE 
Grant SC0007548. 
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Libsim 

Instrumented Simulation Optional Interactive Client 

VisIt runtime 
library 

 

Simulation Code 
 

Libsim 

Adaptor 
(C, C++, Fortran) 

output 

•  Libsim enables simulations perform data analysis and 
visualization in situ by applying VisIt algorithms to data from 
the simulation.  

•  Libsim supports both interactive connections to running 
simulations as well as batch-only modes of operation. 

• Codes: Ale3D, Mercury, Kull, Nek5000, Kestrel, FUN3D, … 
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FieldView 
•  FieldView been on the market for 

CFD post-processing since 1991 
•  Graphic User Interface design 

created by close collaboration with 
Industry engineers and analysts 

•  Over 3000 licenses of FieldView in 
use today throughout the world 

•  Industries ranging from aerospace 
and automotive to nuclear 
engineering, turbomachinery, wind 
energy and food processing. 

•  Scales well to 256 nodes per 
dataset, 30 Bn cell unsteady as 
high water mark 
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Put it all together: In Situ Extracts 
•  VisIt’s export mechanism lets it 

write XDB files in situ 
•  FieldView can efficiently consume 

the XDB files generated in situ and 
visualize them 

•  The volume data did not have to 
be written to disk! 

•  Analyzed results are far smaller, 
enabling frequent in situ extract 
dumps 

XDB 

Simulation 
 
 
 
 
 
 
 

VisIt Runtime 
 
 
 
 

Rank 1 
 
 

Rank 0 
 
 

Rank n 
 
 

…

Libsim 

export 

FieldView 

XDB files extracted 
using VisIt 

Extracts overcome in situ’s greatest weakness – 
that you need to have some idea of what you 
want to see in the end. Extracts are small enough 
to save frequently and permit interactive 
exploration using traditional post-processing 
methods. 
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A successful result 

Maui 
HPC 

PAX 
River 

XDB
s 

•  Many timesteps of unsteady data are produced at Maui, 
Hawaii HPC center 

•  Post-processing via FieldView (interactive and movie 
making) done at Pax River, Maryland 

•  “The processing time of the XDB extracts are a very 
small fraction… I can run through 100 frames of data in 
minutes using the extracts compared to hours using the 
full solution.” 

•  About 15% of runtime spent on in situ 
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Vi
sI

t 
R

un
tim

e 
   

Libsim puts VisIt in situ 
•  VisIt provides Libsim, a library that simulations may use to let VisIt 

connect and access their data 
•  Share simulation’s arrays to avoid I/O and data movement 

Simulation 

Libsim 
Front End 

Adaptor 

Libsim 
Front End 

Adaptor Data 

Source	  

Filter	  

Filter	  
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Libsim Programming Interface 
•  Control Interface handles connections and processing 

commands 
•  Data Interface handles passing data back to Libsim 
•  Libsim bindings exist for C, C++, Fortran, Python 

–  Fortran functions may have abbreviated names, all lower case 
–  Fortran functions take a length parameter after each string 

parameter 

•  Libsim allows for a lot of flexibility 
–  Interactive vs Batch (or support both) 
–  Blocking vs Polling 
–  A lot of common patterns can be copied from examples with little 

modification 



Copyright (c) 2015 Intelligent Light 
All Rights Reserved 

VisIt/Libsim Data Model 
•  Mesh Types 

•  Structured meshes 
•  Rectilinear/Curvilinear 
•  I-Blanking 

•  Particle meshes 
•  Constructive Solid Geometry (CSG) meshes 
•  Adaptive Mesh Refinement (AMR) meshes 
•  Unstructured & Polyhedral meshes 

 

§  Materials 
§  Species 

§  Variables 
•  1 to N components 
•  Zonal and Nodal 
•  Enumerated type 
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Instrumenting a Simulation 
 
 
 

Simulation 
 
main() 
{ 
 
    /* iterate */ 
    while(! done) 
    { 
 
 
 
 
      calc_time_step() 
    } 
} 
 
 
 
 
 

Step 1: Initialization 

Step 2: Iteration 

Step 3: Adaptor 

Initialization 

Handle Input 

Handle Iteration 

Adaptor 
Functions 

•  Environment / Setup 
•  Install Broadcast 

Functions 
•  Parallel Setup 
•  Write .sim2 file 

•  Detect input or 
connection requests 
from VisIt (for 
interactive mode) 

•  Handle 
connection 
request 

•  Handle 
commands 

•  Tell VisIt when the 
time step changes 

•  Tell VisIt whether it 
should update plots 

•  Save images / export 
data 

Create adaptor 
functions that expose 
simulation data to VisIt 
 
•  GetMetaData 
•  GetMesh 
•  GetVariable 
•  GetDomainList 

Instrumentation 
can be performed 
incrementally in 
steps 
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Environment / Setup 

•  Pass options to 
Libsim, such as path 
to VisIt 

•  Libsim needs to know 
about the environment 
to load the VisIt 
runtime library 

Step 1 

/*Read environment on rank 0*/ 
char *env = NULL; 
if(par_rank == 0) 
  env = VisItGetEnvironment(); 
/* Pass the environment to all 
other processors collectively. 
*/    
VisItSetupEnvironment2(env); 
if(env != NULL) free(env); 

VisItSetDirectory( 
    “/usr/local/visitdir”); 
VisItSetOption(“-debug 5”); 
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Broadcast Functions (Parallel) 
•  Libsim will on 

occasion need to 
communicate among 
parallel ranks 

•  The application must 
register functions to 
be used for 
communication 
(keeps MPI 
dependency out of 
Libsim) 

static int bcast_int(int *value,  
    int sender, void *cbdata) 
{ 
    return MPI_Bcast(value, 1, MPI_INT, 
                     sender, MPI_COMM_WORLD); 
} 
static int bcast_string(char *str,  
    int len, int sender, void *cbdata) 
{ 
    return MPI_Bcast(str, len, MPI_CHAR, 
                     sender, MPI_COMM_WORLD); 
} 

VisItSetBroadcastIntFunction2( 
    bcast_int, NULL); 
VisItSetBroadcastStringFunction2( 
    bcast_string, NULL); 

Step 1 

Fortran Versions 



Copyright (c) 2015 Intelligent Light 
All Rights Reserved 

Set Rank, Parallel Flag, and Communicator (Parallel) 

•  Libsim needs to know 
the rank and size of 
the process group 

•  An MPI communicator 
can be installed for 
Libsim that can be 
used to restrict 
operations to a subset 
of processors 

/* Set parallel flag and rank*/ 
int par_rank = 0, par_size  = 1; 
MPI_Comm_rank (MPI_COMM_WORLD, 
               &par_rank); 
MPI_Comm_size (MPI_COMM_WORLD, 
               &par_size); 
VisItSetParallel(par_size > 1); 
VisItSetParallelRank(par_rank); 
 
/* Tell Libsim which MPI 
communicator to use. */ 
MPI_Comm comm; 
MPI_Comm_dup(MPI_COMM_WORLD, 
             &comm);    
VisItSetMPICommunicator( 
    (void *)&comm); 

Step 1 
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Batch vs Interactive 

•  VisIt 2.9.0 extends Libsim 
with a batch-only support 
–  Forces load of VisIt runtime 

library 
–  Does need to listen for 

interactive connections 
(simpler to implement) 

–  Does not need VisIt clients 
to set up plots for in situ 

Batch 

•  The simulation must call 
Libsim periodically to 
respond to VisIt connection 
requests or commands 
–  Opens a listen socket for 

inbound connections 
–  Writes a sim2 file that VisIt 

can use to initiate a 
connection 

–  A successful connection 
causes the VisIt runtime 
library to be loaded 

•    

Interactive 

Libsim permits multiple ways of instrumenting the main 
loop 

Step 1 
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Batch Initialization 

•  Batch Initialization requires the VisIt runtime 
library to be loaded explicitly 

•  Once the runtime is loaded, register data 
adaptor functions 

•  Call functions to set up visualization 

VisItInitializeRuntime(); 
 
VisItSetGetMetaData(SimGetMetaData, NULL); 
VisItSetGetMesh(SimGetMesh, NULL); 
 
VisItRestoreSessionFile(“/path/to/setup.session”); 

Step 1 
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Interactive Initialization 

•  Interactive initialization assumes that code for input 
processing will be added to the main loop 

•  VisIt connections are initiated by reading a “.sim2” file created 
by the simulation on rank 0 
if(par_rank == 0) 
{ 
   /* Write out .sim2 file that VisIt uses to connect. */           
   VisItInitializeSocketAndDumpSimFile(“sim_name”, 
       “A useful description of the simulation", 
       "/path/to/where/sim/was/started", 
       NULL, /* reserved */ 
       NULL, /* reserved */ 
       NULL  /* optional: pass filename for sim2 file */ 
   ); 
} 

Step 1 
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Interactive Main Loop 

Exit 

Solve Next 
Step 

Check for 
convergence, 
end of loop 

Visualization 
Request 

 
 
 
 
 
 
 
 
 
 

Complete VisIt 
Connection 

Process VisIt 
Commands 

Process 
Console Input 

VisItDetectInput 

Initialize •  Libsim opens 
a socket and 
writes out 
connection 
parameters 

•  VisItDetectInp
ut checks for: 
– Connection 

request 
– VisIt 

commands 
– Console input 

Step 2 
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VisItDetectInput 
int mainloop_interactive(simulation_data *sim) 
{ 
    int visitstate, blocking = 0; 
    while(1) { 
        if(sim->par_rank == 0) { 
            visitstate = VisItDetectInput(blocking, -1); 
        } 
        switch(visitstate) { 
        case 0: /* No input from VisIt, return control to sim. */ 
            simulate_one_timestep(sim); 
            break; 
        case 1: /* VisIt is trying to connect to sim. */ 
            if(VisItAttemptToCompleteConnection() == VISIT_OKAY) 
                SetupCallbacks(sim); 
            break; 
        case 2: /* VisIt wants to tell the engine something. */ 
            if(!ProcessVisItCommand(sim)) { 
                /* Disconnect on an error or closed connection. */ 
                VisItDisconnect(); 
            } 
            break; 
        case 3: /* VisItDetectInput detected console input */ 
            break; 
        default: /* Error */ 
            return visitstate; 
        } 
    } 
    return 0; 
} 

Step 2 



Copyright (c) 2015 Intelligent Light 
All Rights Reserved 

Operations During an Iteration 
•  The simulation can tell 

VisIt that the time step 
changed so new 
metadata will be 
pushed to VisIt 

•  The simulation can 
request that all plots 
be updated with new 
simulation data 

•  The simulation can 
save the plots to an 
image or it can export 
them 

Step 2 

VisItTimeStepChanged(); 
VisItUpdatePlots(); 
 
 
 
char fn[100]; 
static int count = 0; 
sprintf(fn, “image%04d.png”, count); 
VisItSaveWindow(fn, 800, 800, 
                VISIT_IMAGEFORMAT_JPEG); 
 
 
visit_handle vars = VISIT_INVALID_HANDLE;        
VisIt_NameList_alloc(&vars);        
VisIt_NameList_addName(vars, "default");                
sprintf(fn, “export%04d", count++); 
VisItExportDatabase(fn,"FieldViewXDB_1.0",  
                    vars); 
VisIt_NameList_free(vars); 
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Adaptor 
•  An adaptor comprises a set of 

functions in the simulation that  
VisIt calls when it needs data 
– Packages your simulation’s data 

in terms that VisIt can 
understand 

– Return actual pointers to 
simulation data (zero copy) 

– Return alternate representation 
that VisIt can free 

– Written in C, C++, Fortran, 
Python 

 

Adaptor 
 
 
 
 

GetMetaData 

GetMesh 

GetVariable 
… 

Step 3 
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Adaptor Functions 
Function Description 
GetMetaData Creates a metadata object that tells VisIt the entities 

advertised from the simulation 

GetMesh Returns a mesh object that contains the simulation’s 
mesh coordinates and connectivity 

GetVariable Returns a data array object containing a simulation 
field 

GetMaterial Return a material object describing how the mesh can 
be decomposed into various materials 

GetSpecies Return a species object indicating how the mesh’s 
materials are decomposed into various material 
species 

GetDomainList Return a list of domains owned by the current MPI 
rank 

Additional adaptor functions return data for advanced features 
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Registering Adaptor Functions 

•  Adaptor functions need to be registered 
with Libsim at runtime, once the VisIt 
runtime library has been loaded 
–  Fortran adaptors rely on functions with specific names 

 

VisItSetGetMetaData(SimGetMetaData, (void*)sim);    
VisItSetGetMesh(SimGetMesh, (void*)sim); 
VisItSetGetCurve(SimGetVariable, (void*)sim); 

visit_handle SimGetMetaData(void *cbdata) 
{ 
    visit_handle md = VISIT_INVALID_HANDLE; 
    if(VisIt_SimulationMetaData_alloc(&md) 
       == VISIT_OKAY) 
    { 
        /* Add items here */ 
    } 
    return md; 
} 

Simulation state / 
User-defined 

Data 

Step 3 
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Fortran Adaptors 
•  Fortran simulations rely on specific 

function names being linked into 
the simulation to satisfy the Libsim 
bindings 

•  All adaptor functions must be 
provided for a successful link 
(functions can be minimal) 

Fortran Adaptor 
Functions 
visitgetmetadata 
visitgetmesh 
visitgetvariable 
visitgetmaterial 
visitgetcurve 
visitgetdomainlist 
visitgetdomainbounds 
visitgetdomainnesting 

Step 3 

integer function visitgetmesh(domain,name,lname) 
implicit none 
character*8 name 
integer     domain, lname 
include “visitfortransimV2interface.inc” 
visitgetmesh = VISIT_INVALID_HANDLE 
end  
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Example GetMetaData Function 

•  GetMetaData 
returns the 
inventory of 
data that will be 
exposed to VisIt 
(meshes, 
scalars, etc) 

•  Used to 
populate 
menus, etc 

visit_handle SimGetMetaData(void *cbdata) 
{ 
    visit_handle md = VISIT_INVALID_HANDLE; 
    if(VisIt_SimulationMetaData_alloc(&md) == VISIT_OKAY) 
    { 
        visit_handle mmd = VISIT_INVALID_HANDLE;                   
        VisIt_SimulationMetaData_setMode(md, 
            VISIT_SIMMODE_RUNNING); 
        VisIt_SimulationMetaData_setCycleTime(md, 0, 0.); 
 
        if(VisIt_MeshMetaData_alloc(&mmd) == VISIT_OKAY) 
        { 
            VisIt_MeshMetaData_setName(mmd, "mesh2d"); 
            VisIt_MeshMetaData_setMeshType(mmd, 
                VISIT_MESHTYPE_RECTILINEAR);                  
            VisIt_MeshMetaData_setTopologicalDimension(mmd, 2); 
            VisIt_MeshMetaData_setSpatialDimension(mmd, 2); 
            VisIt_MeshMetaData_setNumDomains(mmd, 1); 
        } 
        VisIt_SimulationMetaData_addMesh(md, mmd); 
    } 
    return md; 
} 

Step 3 
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Example GetMesh Function 
Step 3 

SimData_t 
 nx=6  xc 
 ny=8  yc 
           pressure 

Simulation Buffers 

visit_handle 
SimGetMesh(int domain, const char *name, 
    void *cbdata) 
{   SimData_t *sim = (SimData_t*)cbdata; 
    visit_handle h = VISIT_INVALID_HANDLE; 
    if(strcmp(name, "mesh") == 0) { 
        if(VisIt_CurvilinearMesh_alloc(&h) != VISIT_ERROR) { 
            visit_handle hxc, hyc; 
            VisIt_VariableData_alloc(&hxc); 
            VisIt_VariableData_alloc(&hyc); 
            VisIt_VariableData_setDataF(hxc, VISIT_OWNER_SIM, 1,  
                 sim->nx, sim->xc); 
            VisIt_VariableData_setDataF(hyc, VISIT_OWNER_SIM, 1, 
                 sim->ny, sim->yc); 
            VisIt_CurvilinearMesh_setCoordsXY(h, hxc, hyc); 
        } 
    } 
    return h; 
} 
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Example GetVariable Function 
// Example!
visit_handle!
GetVariable(int domain, char *name, void 
*cbdata)!
{!
    visit_handle h = VISIT_INVALID_HANDLE;!
    SimData_t *sim = (SimData_t *)cbdata;!
    if(strcmp(name, "pressure") == 0)!
    {!
        VisIt_VariableData_alloc(&h);!
        VisIt_VariableData_setDataD(h,!
            VISIT_OWNER_SIM, !
            1, sim->nx*sim->ny,!
            sim->pressure);!
    }!
    return h;!
}!

Pass simulation 
buffer to Libsim 

Step 3 
SimData_t 
 nx=6  xc 
 ny=8  yc 
           pressure 

Simulation Buffers 
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Example GetDomainList Function 

•  The GetDomainList function 
returns the indices of the 
grids that exist on the 
current MPI rank 

•  Used in load balancer to 
constrain work assignments 

•  Possible to return 
decompositions for multiple 
meshes 

•  Mesh decomposition free to 
change over time (as in 
AMR) 

Step 3 
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Conclusions 

•  We can leverage VisIt’s data extraction 
capabilities at scale via Libsim to write XDB 
data for FieldView from running simulations 

•  Extracted files are far smaller than volume data 
and enable more productive post processing on 
smaller resources 

•  This should be of interest to people who 
develop or support solver codes, as it helps 
people to use their codes 
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Resources 

•  Getting Data Into VisIt (https://wci.llnl.gov/codes/visit/2.0.0/

GettingDataIntoVisIt2.0.0.pdf) 
•  VisIt Example Simulations (http://portal.nersc.gov/svn/visit/trunk/

src/tools/DataManualExamples/Simulations) 
•  VisIt Wiki (http://www.visitusers.org) 
•  VisIt Email List (visit-users@email.ornl.gov) 


